
Design and Implementation of a

Collaborative Music Software

Master’s Thesis

Johannes Schultz
Master Informatik

Betreuer:
apl. Prof. Dr. Achim Ebert,

M.Sc. Franca-Alexandra Rupprecht

Abstract

Collaborative software, or groupware, allows users around the world to
work towards a common goal without the need for explicit synchronization
e.g. by locking shared files or sending updates via e-mail. Collaboration
helps to bring together competences and ideas from different experts. It
is a common tool in the industrial context, but also in music creation
where different musicians can contribute to the composition of songs by
working on different parts depending on their individual strengths and
skills. In the context of music software, there are several approaches to
allow collaboration between musicians, but no current approach exists for
so-called tracker software, which are keyboard-driven expert systems.

This thesis seeks to address this issue by defining desirable features
for a collaborative tracker and by extending an existing tracker software
with a collaborative editing mode. The technical approach is generalized
to serve as a guide for extending similar single-user software.

Zusammenfassung

Kollaborative Software (“Groupware”) erlaubt es Benutzern auf der
gesamten Welt, an einem gemeinsamen Ziel zu arbeiten, ohne dass dafür
eine explizite Synchronisation wie z.B. durch Sperren oder den Austausch
von E-Mails notwendig ist. Kollaboration hilft dabei, die Kompetenzen
und Ideen von verschiedenen Experten zu vereinen. Kollaborationswerk-
zeuge sind insbesondere im industriellen Kontext verbreitet, aber auch die
Erstellung von Musik kann davon profitieren, wenn verschiedene Musiker
zu einer Komposition beitragen, indem sie an verschiedenen Teilbereichen
abhängig von ihren Fähigkeiten und Stärken arbeiten können. Im Kontext
von Musiksoftware gibt es verschiedene Ansätze, um eine Kollaboration
zu ermöglichen, aber es gibt keine aktuellen Ansätze dafür im Bereich der
Tracker -Software, welche tastaturgesteuerte Expertensysteme darstellt.

Diese Arbeit befasst sich mit dem Problem, indem wünschenswerte
Eigenschaften für einen kollaborativen Tracker definiert werden und ein
existierender Tracker um einen Kollaborationsmodus ergänzt wird. Der
technische Ansatz wird verallgemeinert, um als Leitfaden für die Erweite-
rung ähnlicher Einzelbenutzersoftware dienen zu können.

2

Contents

1 Introduction 5
1.1 Context and Motivation . 5
1.2 Goals . 5
1.3 Outline . 6

2 Related Work 6
2.1 Collaborative Software . 6
2.2 Music Software . 7
2.3 Collaborative Music Software . 10

3 Methodology 11
3.1 Collaboration Process of Music Composition 11
3.2 Base System Design . 12
3.3 Applied Collaboration Methodology 13

4 Implementation 16
4.1 Software Architecture . 16

4.1.1 OpenMPT . 16
4.1.2 Networking Components 16
4.1.3 Architecture Details . 17
4.1.4 Code Organization . 19

4.2 Technical Realization . 20
4.2.1 Client / Server Architecture 20
4.2.2 Serialization of Internal Data Structures 21
4.2.3 Synchronization of User Actions 22
4.2.4 Collaboration Workflow 24
4.2.5 Additional Collaboration Features 25

5 Analysis 30
5.1 Subjects . 30
5.2 Experimental Setup and Data Collection 30
5.3 Data Analysis . 32
5.4 Results . 33

6 Discussion and Conclusion 36
6.1 Discussion . 36
6.2 Conclusion and Future Work . 38

Appendices 44

A User Experiment Tasks 44

B Source Code 46

List of Figures

2.1 REAPER, a typical sequencer program. 7
2.2 Example of some musical note data in OpenMPT, a tracker pro-

gram. 8
2.3 Structure of a “module” (song) as used in many trackers. 9
3.1 General workflow of music collaboration 11
3.2 OpenMPT, a free tracker software. 12
4.1 Sequence diagram of the different data flow variants 17
4.2 Network communication architecture 18
4.3 The Networking namespace containing most of the implementation 19
4.4 Structure of a network message and its uncompressed content. . 20
4.5 Undo buffer, and modification status of an open document (Moddoc.cpp)

in Visual Studio. 22
4.6 Workflow of the collaborative OpenMPT implementation. 24
4.8 Dialog for joining an existing collaboration. 25
4.7 Dialog for sharing a song with other users. 25
4.9 Chat window with user list and action log. 26
4.10 Collaborators’ shared edit cursors 27
4.11 Pattern locked by a collaborator. 28
4.12 Annotations are shown in the chat dialog to reduce clutter. . . . 28
4.13 Annotations are displayed in the pattern in an unobtrusive way. . 29
5.1 Boxplot showing the data distribution of the questionnaire. . . . 34

List of Tables

1 Task scores and execution times 33
2 Questionnaire scores . 34
3 Calculation of the usability score U of the collaborative editing

mode. 34

1 Introduction

1.1 Context and Motivation

Writing and performing music is an inherently collaborative task, as the mul-
titude of bands and orchestras in this world show us. Starting with early se-
quencing programs in the 1980s such as Steinberg Pro 16 [22], digital music
composition tools have evolved significantly and are now the prevalent way of
composing music.

However, most mainstream music composition software either does not offer
any collaboration features to work on a piece of music with another musician on
a different computer, or the support of collaborative features is only very limited.
An informal survey among eight fellow musicians has shown that many artists
do not use these collaborative features because they are either not real-time or
simply buggy.

While many electronic musicians seem to be comfortable with this way of
working, it is inherently limiting to those who wish to collaborate with one or
more fellow musicians. Just like the various instrument parts in a classically
notated piece of music are often written by the individual performers of each
instrument in a band, the same should be possible for electronic compositions.
For example, one musician may be more comfortable writing bass lines, while
another one might prefer writing leads and background chords, and a third one
could add the drum section.

There exists a variety of tools for writing music with a computer; The ma-
jority of them can be classified as sequencers, but there is also a small group of
music software called trackers which have a steeper learning curve compared to
more mainstream software, but are suited well for realizing musical ideas very
quickly using only a computer keyboard. Trackers revolve around a text grid
called pattern, in which notes and other control data are entered. When inter-
preting these patterns, the computer can then send the note data to a variety of
sound sources, from basic samples (audio recordings) to complex virtual instru-
ment plugins. This textual representation and keyboard focus make trackers
very efficient to work with but also more difficult to learn, much like expert
systems in other domains. There are no current collaborative tools available for
this niche, leading to work-arounds like exchanging song project files via e-mail.

1.2 Goals

The goal of this thesis is to enable tracker musicians to make use of collabora-
tive features in an existing tracker software by extending it with online editing
features. Collaboration should not be limited to a handful of actions but all
the program’s functionality should be available to the musician. Furthermore,
the steps taken to enable this goal should be analyzed and generalized to other
single-user software, hopefully making it easier for other software developers
in the future to add collaborative features to their software. The results will
be quantified in order to determine the usability improvement achieved by the
collaborative features.

5

1.3 Outline

In the remainder of this thesis, we are going to explore related work in the field
of collaborative and music software in Section 2, the methodology for creating a
collaborative tracker software in Section 3, the technical choices that have been
made in Section 4.1, the actual implementation in Section 4.2 and a user study
in Section 5, finally leading to a discussion and conclusion in Section 6.

2 Related Work

In this chapter, we are going to explore and define collaborative software in
general, music software and collaborative music software.

2.1 Collaborative Software

While many software systems (including music software) only support single-
user interaction with the system, collaborative software, or groupware, allows
asynchronous group activities to be carried out. Asynchronous operations allow
to simultaneously work on and modify the same objects and see each other’s
modifications in real time. This means that a group of people can work on
a common task, no matter if they are in a shared environment or physi-
cally apart. Groupware can be used in many contexts. The scientific Computer
Supported Cooperative Work (CSCW) community has explored use cases such
as outline and graph editing [13], in the medical field [4], orthography sys-
tems [8], software engineering [27], landscape planning [47] and factory layout
planning [39]. Probably the most popular and well-known groupware these days
are office suites like Google Docs or collaborative text editors like Etherpad [46].

Ellis et al. [13] define two dimensions over which collaborative systems can be
classified: the common task dimension describing how much related the tasks
of individual users of the system are, and the shared environment dimension
describing how close the participants are physically. Groupware ranks high in
the common task dimension (as opposed to e.g. a time-sharing system), because
all users work towards a common goal. Groupware can rank both high and low
in the shared environment dimension depending on the usage scenario. The
intent of this thesis is to develop a system which ranks high in the common task
dimension (as several musicians will work on the same piece of music with the
same intents), but low in the shared environment dimension, as the software
must support collaboration with remote musicians.

Real-time groupware systems have the following characteristics according to
Ellis et al. [12]: highly interactive, distributed (users may be in different physical
locations), volatile (participants can join and leave), ad hoc (participant actions
do not follow a planned script) and focused (participants work on the same data,
causing a high number of access conflicts). As a result, groupware poses unique
challenges such as maintaining consistency of the shared documents between all
collaborators, while also offering a short response time when propagating the
actions of a user to all other users, and concurrent editing [43]. Groupware is
different compared to other multi-user software such as database systems that
try to give the impression that there is only one user by means of locks and

6

Figure 2.1: REAPER, a typical sequencer program.

transactions: groupware wants to achieve the opposite impression and requires
concurrency control to resolve conflicts between users.

2.2 Music Software

The most common form of music composition program on computers is the
sequencer [32], a tool that revolves around a horizontal linear timeline showing
the arrangement of the bigger building blocks of a music project, such as streams
of Musical Instrument Digital Interface (MIDI, a digital communication protocol
for exchanging note and modulation data between instruments and computers)
events, automation envelopes and audio tracks. These building blocks can be
freely arranged. Simple editing of the blocks is also possible, but the majority
of lower-level editing work is relayed to a piano roll or score editor, where
the individual note events of each MIDI track can be edited with high precision.
Most interaction is done through dedicated MIDI controller or the computer
mouse, although keyboard shortcuts can be used to speed up some actions [32].
Popular examples of sequencers [32] include Steinberg Cubase [16], Ableton Live
[1], Tracktion [10], REAPER [25] (Figure 2.1) and FL Studio [23].

On the other hand, trackers are centered around a concise textual nota-
tion arranged in fixed grid (pattern) much akin to a spreadsheet. A pattern
contains a number of simultaneously playing channels that contain note data,
instrument information and modulation effects. Time normally runs from top
to bottom in a pattern, while channels are arranged from left to right. A song
is typically made up from multiple patterns and a set of instruments, which can
be based on sample data, external MIDI devices or virtual instrument plugins.
Patterns are visualized as a cell grid, as seen in Figure 2.2. Instruments are
triggered in patterns by specifying which note to play, together with some op-

7

Figure 2.2: Example of some musical note data in OpenMPT, a tracker program.

tional effects which modulate the playback of the note. For example, the cell
content D#6 01 v32 F01 may instruct the program to play the note D#6 using
the first instrument (01) at 50% velocity (v32), slowly increasing its pitch over
the course of the current row (F01) [33].

Trackers originated on the Commodore Amiga home computer, where they
made optimal use of the existing sound hardware to play background music with
up to four simultaneous voices (instruments) in games and graphic demos with
minimal computational overhead [38]. Later, the tracker concept was expanded,
in particular on the Personal Computer (PC), to allow for more polyphony,
wider note ranges, bigger patterns, more (and more expressive) instruments
and generally making trackers more intuitive and easy to use, eventually turning
them into general-purpose music composition tools rather than specialized tools
for game developers.

In direct comparison, the main view of a sequencer focuses more on the
“big picture” (the arrangement), having the detailed note information hidden
in lower-level views, while the main view in a tracker dedicates most of the screen
estate to all the note data, offering many editing actions to quickly transform
the notes. A lot of properties of sequencers are modeled after analog audio gear,
such as the playback controls (transport bar) and the mixer [32].

Figure 2.3 shows the general structure of a song (also called module) as it
is found in many trackers:

• A set of global settings describes general properties of the song such as its
title, the initial tempo, initial volume levels and similar properties.

• Audio plugins, which are either effects (such as reverberation or filter) or
virtual instruments.

• Samples, which consist of the actual sample data (waveform) and settings
such as pitch, loop points, sample name, volume, etc.

• Instruments, which describe how samples or instrument plugins are sup-
posed to be played. An instrument references a number of samples or a
plugin.

• Patterns, which contain the score of the music.

• Order lists, which are sequences of patterns that describe in which order
the patterns are played.

8

Figure 2.3: Structure of a “module” (song) as used in many trackers.

Popular examples of current tracker software include Buzz [44], MilkyTracker
[3], OpenMPT [41], Renoise [30] and Schism Tracker [45].

In their research, Nash et al. [33] [34] highlight that the tracker interface
allows for rapid editing interaction with a fast edit-audition feedback cycle,
which offers a high degree of liveness, enabling sketching and flow, but at the
same time there typically is a steep learning curve, because motor skills and
program knowledge have to be learned and practiced much more in-depth than
in more graphically-oriented sequencer software. This learning curve can make
trackers cumbersome to use initially, because a lot of functionality is hidden
behind shortcuts that have to be figured out first. Once the user is familiar
with the user interface, however, a tracker allows many tasks to be carried out
very quickly and efficiently.

As a result, it can be said that trackers are more complicated expert sys-
tems. Expert systems are based on knowledge rather than information and
are “used primarily by the people who built them, love them and are tolerant
of their idiosyncrasies.” [6] Trackers are suitable for expert users, but little has
been done in the past to enable this advantage in liveness and flow for collab-
orative musicians. Among all the widespread tracker software released in the
last thirty years, only the MS-DOS-based Impulse Tracker [28] stands out by
having a collaborative editing mode via the now-obsolete IPX network protocol.
However, this collaboration mode was only added as an afterthought to the soft-
ware in 1999, four years after its initial release, and many editing features were
disabled in collaborative mode. Thus, most tracker musicians have to resort to
the “classic” way of collaboration by means of exchanging music files and taking
turns at editing them, and the immediacy of collaboration is not available to
them.

9

2.3 Collaborative Music Software

The idea of collaborative music software is not new: there is a number of existing
music software that enables collaboration, and also add-ons that can enable
collaborative features in single-user environments to some extent. However, a
lot of this software comes with various disadvantages that this thesis seeks to
address:

• Dedicated sequencers like Ohm Studio [37] require learning a new interface,
rather than being able to work in a familiar environment the musicians
are already used to.

• Some solutions are hosted in the “cloud” like Kompoz [26], which can raise
privacy and reliability concerns. Once the service shuts down, it may be
impossible to retrieve the song data and reuse it in a different music tool.

• A lot of this software is relatively new compared to single-user solutions
that have been around for 20 or 30 years, thus it may lack features or may
not be as mature.

• Some solutions cannot be used for a full song production, because they
only focus on sharing the musical notation data, but not instrument defi-
nitions (e.g. MuseScore [31] or flat.io). The ability to use custom instru-
ments is crucial to electronic music production.

• On the other hand, solutions like Kompoz [26] only appear to allow col-
laboration with prerecorded stems. This means that it is not possible to
edit another collaborator’s song parts, as e.g. an entire melody or chord
sequence is “baked” into a single monolithic audio stream called stem.
Only the artist who created the stem can also update it.

• There is also a completely different branch of collaborative music software
used for jamming, such as NINJAM [24]. These programs do not allow for
complete productions and have fundamentally different requirements such
as low latency transmission and perfect audio synchronization between
clients, while lacking editing features.

• Add-on solutions like Blend [5] extend existing music software. They are
inherently limited by their design and cannot offer real-time collaboration,
as they just offer automatic synchronization of project settings, audio files
and other related data.

• Solutions like Steinberg ’s VST Connect Pro [17] for Steinberg Cubase have
often been reported as being very unstable.

10

Figure 3.1: General workflow of music collaboration

3 Methodology

In this chapter, the methodology used to implement a collaborative tracker
software is explained and motivated. An existing music composition tool is
chosen and enhanced with collaborative features, thus improving the workflow
of joint music composition by making it more efficient and feature-rich. A
number of collaboration-supporting features is chosen and rated according to
the criteria catalog defined by Rupprecht et al. [40].

3.1 Collaboration Process of Music Composition

To better understand the requirements for collaborative composing, the typical
collaboration process needs to be examined first.

Collaboration can happen in many different ways, so editing of all the com-
ponents described in Figure 2.3 needs to be supported. A song typically grows
dynamically during its creation, and tasks during the songwriting process in-
clude:

• adding instruments,

• adding notes and patterns,

• adding plugins,

• revising old ideas,

• but also throwing away earlier sketches.

As a result, the ability to insert, modify and delete new entities needs to be
available at any time. Coordination between the collaborators is crucial, as
they need to discuss the structure of the song and the changes they make. For
a disciplined cooperation, it can help to restrict the editing of certain entities
not only verbally, but also apply technical restrictions so that users do not get
into each other’s way.

After each collaborator’s turn, the updated document has to be sent to
the other musicians, e.g. through e-mail. The results can then be discussed,
resulting in improvement ideas, and the next person can start editing. Everyone
else is not allowed to edit the file at this point.

11

Figure 3.2: OpenMPT, a free tracker software.

Music composition can have a very dynamic nature with constantly changing
roles and tasks, in particular when one musician gets inspired by the ideas of
another. For example, one musician might get stuck in the middle of writing
a melody, but a collaboration partner could get inspired by the half-finished
melody and be able to find a continuation. The creation of a song can span
several days, weeks or even months, so collaborators need to be able to leave
permanent comments and write to-do lists.

The workflow described in Figure 3.1 roughly matches this very lively but
sometimes also chaotic procedure.

3.2 Base System Design

As the base for the implementation of this thesis, the free tracker software
OpenMPT [41] (Figure 3.2) has been chosen for several reasons:

• The need for implementing a full musical application from scratch was
avoided.

• As trackers are expert systems with a steep learning curve, basing the
collaborative environment on an existing, known environment avoids the
need to re-learn a new software for many users, as they can use the same
familiar tool for creating collaborative works as they previously used for
other pieces of music.

• OpenMPT is one of the most popular trackers. Of all the tracked music
works uploaded to The Mod Archive [42] in 2017, one of the largest col-

12

lections of tracked music online, it was found that about 42% are written
in OpenMPT.

• After being developed for more than twenty years, OpenMPT ’s code base
is very mature and stable. I am one of the main developers and already
familiar with the code.

In the past, I have worked together remotely with various other tracker
musicians from various parts of the world, using OpenMPT and other tracker
software. The workflow was typically as described in Section 3.1: One artist
would start by picking a set of instrument files to be used for the song and writ-
ing the first few melodies, chords or whatever came to their mind. The resulting
file would then be saved and sent via e-mail to the next musician who would add
more instruments and musical parts. This process was repeated several times
until the piece of music was done. In this workflow, ideas can be exchanged
via e-mail or instant messengers between each iteration, but is difficult to di-
rectly discuss ideas by trying them out and listening to them together, and it is
impossible to work in parallel on unrelated parts of the song. As a result, the
collaborative functionality was spread over several components:

• Editing, insertion, deletion of data: Music software

• Data exchange: External file transfer

• Task and role assignment: External communication channel

• Comments: Music software (limited) or external communication channel

• Discussion: External chat software

Hence, a number of collaborative features to improve this situation had to be
found, which are described in Section 3.3.

3.3 Applied Collaboration Methodology

Collaborative software can be categorized by the way the users progress towards
a common goal. Depending on the approach, the location of users and division
of labor change the way the software is used. In the case of this thesis, dis-
tributed cooperation as well as distributed single task performance are
valid working styles for the collaborators, depending on whether they want to
work on the same or different instrument or song section at the same time.

Collaborative features can be classified by the following groups according to
Rupprecht et al. [40]:

1. Content support: Active interaction and integration of the content by
the actors.

2. Information sharing: Functionality used to share information in order
to establish the knowledge basis for all actors.

3. Coordination support: Tasks that support the coordination of work
packages between actors.

13

4. Communication support: Features that facilitate communication to
bridge spatial gaps.

5. Compliance support: Aids for fulfilling rules or guidelines.

6. Content management: Access control, data synchronization and con-
sistency.

7. Usability: Methods to improve satisfaction, efficiency and effectiveness.

8. User Experience: Emotions and attitudes about using the technology.

Together with expert users of the tracker software that was to be modified,
as well as some users from the informal survey mentioned in the introduction, a
list of features that should be available for the collaboration was devised. In fact,
there exists a feature request dating back as far as 2010 [36] for a collaborative
network mode which has been used to come up with the initial requirements,
which were then further refined. The requirements were then finalized in a task
model as defined by [40].

1. Editing: Editing a song shared between collaborators should not be any
different from editing a song in a single-user scenario. All single-user features
should be available so that the user can work on the song as they are used to.
In this context, editing comprises all possible user actions including creating,
modifying and deleting content. This satisfies categories 1 (Content support)
and 8 (User experience: Intuitive and simple, reduced cognitive load).

2. Chat: As one of the most basic collaborative features, the application
should allow direct communication between all collaborators without the need
of installing any external chat software. This feature supports coordination (3:
jurisdiction) and communication (4: communication, discussion) by enabling
users to discuss changes, task assignments and review each other’s progress.

3. Rights management: The user that initially shares a song for collab-
oration decides how many collaborators can join the editing process. It should
be possible to allow or deny certain actions for some users. As an example for
this, two access levels should be implemented: Collaborator and spectator. Col-
laborators have full access to the shared document and can edit anything, while
spectators can only watch the collaborators’ actions and write chat messages.
The latter can be interesting as a replacement for video live-streaming the cre-
ation of a song, which is done by both professional and amateur musicians on
platforms such as Twitch these days. A song can be optionally protected by a
password. This design supports category 3 (coordination support, in particular
jurisdiction) and 6 (content management: access control).

4. Shared edit cursors: Collaborators should be able to see other col-
laborators’ edit cursors in order to be able to synchronize their work and avoid
collisions when editing pattern data. Since most of the time in a music project
is spent working on the pattern data, the pattern editor is the most critical
part of the user interface where such collisions have to be avoided. Similar edit
markers could be added for samples and instruments as well. The edit mark-
ers should be shown both in the order list, giving a rough idea which pattern
the collaboration partner is currently editing, as well inside the pattern, high-
lighting the exact cell the user resides in. Collisions can be avoided effectively

14

in this way. To tell different users apart, each user’s edit marker is shown in
a different color. This feature supports information sharing (2: Tracking of
other users’ approach, retrieval of context-relevant information, screen sharing,
shared workspace), as changes by other users can be tracked easily, and implic-
itly also communication support (4) as the user’s edit position is communicated
automatically. Later, this feature can be extended to also show edit cursors for
instruments and samples, where collisions are less likely to happen.

5. Automatically following edit cursors: To be able to better un-
derstand the actions of the collaborators with edit rights, users with spectator
rights can choose to automatically follow the edit cursor of a specified user. This
is similar to the telepointer concept described by Ellis et al. [13], but with the
difference that the cursor can only be moved by one person, while still moving
on other users’ screens as well. This feature satisfies category 2 (information
sharing) for the same reasons as the shared edit cursors.

6. Edit locks: To take collision avoidance even further, edit locks can
be used to restrict the editing of a specific item to a single user. This way,
it can be guaranteed that e.g. no data in a pattern is overwritten by other
users. This feature facilitates coordination support (category 3: jurisdiction)
and compliance support (5: team self-management).

7. Annotations: To enhance context-dependent communication, annota-
tions can be added to discuss song patterns. Unlike chat messages, they are
permanent (not lost between edit sessions). The goal is to help artists organize
their collaboration spanning multiple sessions without having to write down
thoughts they might be having about a specific pattern location in a different
document. Like the chat feature, this supports coordination (3: alert mecha-
nisms, awareness support) and communication (4: discussion tool).

Apart from functional requirements, the instability of some existing collab-
oration solutions mentioned before motivates to add quality aspects as non-
functional requirements as well: the collaborative editing mode should not lead
to random crashes and make OpenMPT less stable, in particular if the internet
connectivity is not perfect.

15

4 Implementation

4.1 Software Architecture

The technology for realizing the goal of this thesis was chosen as follows.

4.1.1 OpenMPT

OpenMPT is written in C++14 and runs on the Microsoft Windows platform.
The GUI is realized using the MFC framework, which is a lightweight toolkit
based on the WinAPI – and the reason why the code only runs on Microsoft
Windows.

4.1.2 Networking Components

For implementing the networking component, it was initially planned to use the
widespread gRPC [18] framework. gRPC is a high-performance Remote Proce-
dure Call (RPC) framework by Google that allows to define software interfaces
for distributed processes on a variety of platforms using Google Protocol Buffers
as the interface definition language. In theory, this sounded very promising, as
the interfaces would only have to be defined in a simple, text-based definition
file, from which the interface code would be generated automatically, saving a
lot of time. However, gRPC is a huge project with a lot of dependencies. While
it is easy to set up on UNIX-based systems, configuring and setting up all depen-
dencies, as well as integrating the CMake-based build system into OpenMPT ’s
own build system proved to be very difficult and time-consuming, so in the end
it was decided to look into different libraries instead.

After the attempt of integrating gRPC was unfruitful, a combination of
asio [2] and cereal [19] was chosen instead to implement the RPC mechanism
manually.

asio (also known as part of the boost library as boost::asio) is a platform-
independent, modern and widely-used networking library written in C++11,
providing abstractions for both synchronous and asynchronous network opera-
tions. It provides the foundation for the networking code, handling connections
and sending of data.

cereal is used to implement the serialization of remote procedure calls on top
of asio. It is a C++11 library that greatly simplifies serialization of arbitrary
C++ data to and from several formats such as JSON and XML. To serialize or
deserialize an object of a given class, typically only a single templated function
listing all the members of that class needs to be added. This has to be done
manually due to the lack of static introspection in C++. cereal ’s internal binary
serialization format was chosen as it is more compact that both JSON and XML
and the serialized data is not required to be readable when sending it over the
network. After serialization, network data is further compressed using zlib [15],
a general-purpose compression library.

16

Figure 4.1: Sequence diagram of the different data flow variants

4.1.3 Architecture Details

Client / server: A classic client / server architecture has been chosen for the
network code. The user that shares a song automatically acts as the server, and
other collaborators or spectators connect to the server as clients. The server
acts as a centralized coordinator process as defined by Ellis et al. [12]. This
makes the implementation of rights management trivial, as the server validates
the user rights for each message received from clients before relaying them to
other clients. It should be noted in this context that there is little to no other
validation of incoming messages and no encryption, as it was not considered to
be relevant in the context of this thesis. For real-world usage, the implemen-
tation should later be refined to validate messages more thoroughly and guard
against out-of-range or otherwise unexpected values, as otherwise an attacker
could potentially trigger remote code execution.

Since the architecture requires a peer-to-peer connection, setting up a col-
laboration session can be moderately difficult in modern network setups: most
users have firewalled networks that require explicit whitelisting of TCP and
UDP ports to servers inside their network, as otherwise a client cannot make a
connection from the outside. There are solutions to this problem such as hole
punching [14] and Universal Plug and Play (UPnP), but they were considered
to be out of scope for this thesis.

Network byte stream: TCP/IP was chosen as the network protocol for
data exchange between clients and the server. While UDP can offer better
latency than TCP [7], a reliable, in-order delivery of messages is required for a
consistent representation of the music data across all clients. Re-implementing
these features on top of UDP to emulate TCP’s benefits would thus be pointless.

17

Synchronization: Most editing actions can be carried out asynchronously.
Pattern data is easier to process in this respect than e.g. text data, because edit-
ing is normally done in overwriting mode rather than insert mode and does not
shift the document forward or backward at the cursor position. When a pattern
cell is edited, its new content can simply be sent to the server asynchronously,
and the server then sends the new state to all clients. The client which initiated
the change does not have to wait for this process to be finished. Other actions
like inserting new patterns need to be carried out synchronously though, as oth-
erwise a conflict would occur if two clients were about to insert a new pattern
at the same time. Actions like this are implemented synchronously, where the
client waits for the server to provide the ID for a new pattern, instrument or
other item to be used. The server sends the content of the newly inserted pat-
tern to all clients, and the client that initiated the request gets an additional
notification so that the user interface can be updated, e.g. by jumping to the
newly inserted pattern. Figure 4.1 shows the data flow four exemplary actions
as they appear in the program. The first two actions, joining a collaboration
and inserting a pattern, require synchronization, while the latter two actions
are carried out asynchronously.

Data flow: Data sinks implement a simple listener interface that receives
incoming data. Both the server and the client are implemented this way, and
register themselves as listeners at the CollabClients as seen in Figure 4.2. Both
the RemoteCollabClient and LocalCollabClient extend the CollabClient

class, the only difference being that the LocalCollabClient directly talks to
the in-process server without establishing a network connection. When new
network data arrives at the RemoteCollabClient, it sends it to the registered
listener. The client’s connection dialog is implemented identically, and changes

Figure 4.2: Network communication architecture

18

Figure 4.3: The Networking namespace containing most of the implementation

the listener to the actual song object once the client joins a shared song. The
CollabClient instances also receive user updates when the song is changed and
pass them on to the server – either directly through a function call on the server
side, or through the network connection on the client side.

4.1.4 Code Organization

All code related to network and collaboration was put into a separate namespace
Networking. The main classes (not including dialogs) of that namespace are
documented in Figure 4.3. Outside of this namespace, the main document
class CModDoc was extended with a listener interface as described above. The
architecture required only few other code changes in CModDoc and related classes,
which were mostly insertions of code for change detection and synchronization.
This way, keeping the experimental collaboration code in sync with the main
development of OpenMPT was relatively simple.

The networking code is mostly contained in the following files:

• Networking.cpp/.h: General networking implementation

• NetworkingDlg.cpp/h: Sharing, joining, annotation and chat dialogs

• NetworkListener.h: Listener interface

• NetworkTypes.cpp/.h: Serialization and type definitions for message ex-
change

19

In addition, classes that monitor the various song components for changes
and initiate the data synchronization, as described in Section 4.2.3, are con-
tained in GlobalsTransaction.cpp/.h, InstrumentTransction.cpp/.h,
PatternTransaction.cpp/.h, SampleTransaction.cpp/.h and
SequenceTransaction.cpp/.h.

4.2 Technical Realization

The implementation of the collaboration feature in OpenMPT can be roughly
categorized into four steps:

1. Implement the client / server architecture

2. Implement the serialization of internal data structures that need to be
exchanged

3. Find all user actions that need to be synchronized and implement the data
exchange for them

4. Implement any other collaboration-specific features

These steps will be discussed in the following sections. They can serve as a
guide for adding collaborative features to any single-user software.

4.2.1 Client / Server Architecture

Figure 4.4: Structure of
a network message and
its uncompressed con-
tent.

Both the client and server are implemented directly in
OpenMPT. In particular, the server is not a separate
process, but runs directly in the OpenMPT instance
of the user that wants to share a song for collaborative
editing. As soon as one or more songs are shared, the
server starts listening on TCP port 44100 for incom-
ing connections. Network connections are handled us-
ing the asio library. When a client connects to the
server, their version numbers are compared to avoid
incompatibilities between different software versions.
If they both run the same version, the server sends a
list of shared songs, and the client can then join one
of the documents. As a response, the server sends
the current state of the song, including all required
meta-data such as the list of collaborators, annota-
tions, edit locks, etc. and the collaborative editing
can begin.

The protocol used to communicate between client
and server is a simple binary protocol with a header
(Figure 4.4) containing two 32-bit length fields for the compressed and uncom-
pressed size of the message. The message itself is compressed using zlib as a lot
of the communication data compresses rather well. The zlib state is retained
between network messages in order to exploit similarities between messages,
leading to a further reduction in network traffic. The decompressed message

20

(Figure 4.4) consists of a four-byte identifier describing the message type, fol-
lowed by arbitrary data serialized into a binary cereal archive. While the server
implicitly identifies clients by their network connection handle, it prepends a
unique client ID to each message it sends to the clients so that it is known
which change originated from which user.

4.2.2 Serialization of Internal Data Structures

Clients and server need to exchange modifications of the internal data structures,
and of course the server also has to send the initial state to all clients when they
join.

In OpenMPT, all internal song data is contained in a CSoundFile object
inside the CModDoc document object, which contains all the sequences, pattern
data, samples, instruments and other miscellaneous data. As a first step of
this task, it was attempted to serialize the whole CSoundFile object and its
contained classes to be able to send the complete initial state to another client.
In its most simple form, serializing a class using cereal looks like this:

Listing 1: Example of data serialization using the cereal library

1 template<class Archive>

2 void CSoundFile::serialize(Archive &archive)

3 {

4 archive(m_nType, m_nChannels, m_nSamples, m_nInstruments,

5 m_nDefaultSpeed, m_nDefaultGlobalVolume, m_nDefaultTempo,

6 m_SongFlags, m_nDefaultRowsPerBeat, m_nDefaultRowsPerMeasure,

7 ChnSettings, Patterns, Order, Samples, m_MidiCfg, m_MixPlugins,

8 m_songName, m_songArtist, m_songMessage, m_madeWithTracker,

9 ...

10);

11 }

This single function can serve both for serialization and deserialization of
the data, depending on the template parameter Archive. Primitive data types
such as integers, but also many useful containers from the C++ standard li-
brary (such as std::string and std::vector) are handled automatically by
cereal, but since our CSoundFile object is also composed of many custom data
types such as patterns and instruments, custom serialization functions had to
be written for all of these classes as well. Once this was done, the complete
compound object could be serialized in just one function call.

However, serialization of some of the contained objects was not directly pos-
sible at first, as cereal cannot serialize raw pointers. This is due to the fact that a
raw pointer could point to any number of objects and de-duplication of pointed-
to objects can be difficult when trying to serialize them. As a result, cereal can
only serialize smart pointers such as std::shared ptr [20]. Like many appli-
cations with legacy code, some objects (patterns, sequences and sample data)
were managed using raw pointers to dynamic arrays. Turning pattern data
and sequences into std::vector objects not only made serialization of these
objects considerably easier, but it also greatly simplified the implementation of
their public interface, as e.g. insertion and deletion of pattern or sequence data

21

could now be handled directly using the std::vector implementation rather
than through custom functions. All in all, the modifications made this part of
the OpenMPT source code safer and more future-proof, so these modifications
were directly merged back into the OpenMPT main repository. Sample data
was handled separately through cereal::binary data instead, as it would have
been considerably more work to use std::vector there due to some “pointer
tricks” being used in the low-level audio mixing routines. cereal::binary data

allows to directly send any binary object by specifying a pointer and size. This
also avoids creating duplicate copies of sample data when sending only parts of
a modified sample over the network, as we can directly point into the sample
data rather than having to replace it completely.

Most serialization and deserialization functions can be found in the file
NetworkTypes.h.

4.2.3 Synchronization of User Actions

Figure 4.5: Undo buffer, and modi-
fication status of an open document
(Moddoc.cpp) in Visual Studio.

Now that all the internal data struc-
tures can be synchronized, they have
to be monitored for modifications, so
that synchronization can be triggered
when required. In the most simple
case, only modifications initiated by
the user need to be identified, but in
more complex applications, there may
also be other sources that can manip-
ulate the data structures, such as plu-
gins or scripts. In most applications,
there are several ways of identifying user actions that modify the document:

• Common programs mark a document as modified, sometimes denoted by
adding an asterisk to the document’s name in the title bar as seen in
Figure 4.5. Typically, there is either an explicit call to a function (called
SetModified() in OpenMPT) in the code that handles the user action,
or the edited object automatically calls this function whenever one of its
setter methods is called.

• Typically, programs also provide an undo buffer that records the state of
the edited object (e.g. some note data) before the modification has been
carried out. In OpenMPT, this is done for samples, patterns and instru-
ments by calling PrepareUndo() on the sample, pattern or instrument
undo buffer.

• Programs that expose a sophisticated scripting engine to the user may
already allow to register “watcher” functions that are automatically called
when an object is modified. This third method is not used in OpenMPT,
as it currently does not have a scripting interface.

• If none of the previous options are available, every single editing action
needs to be reviewed manually. Except for very minimalist or experimental
software, this should never be the case, though. Manual testing of all

22

editing actions can still be beneficial to detect inconsistencies such as
forgotten function calls to SetModified().

To identify the places where the code had to be modified, a mixture of the
first two approaches was chosen by finding all references to SetModified() and
PrepareUndo() functions. As a side effect, this activity also unearthed several
cases where the two functions were not called consistently, e.g. by only marking
the document as modified or only preparing the undo buffer instead of doing
both. These problems were fixed directly in the main OpenMPT repository.

After all points of user actions had been identified, a way of detecting and
sending the changes had to be developed. To avoid having to write specific
code for every user interaction, a few simple classes were implemented for all
the CSoundFile child classes that follow the well-known RAII C++ idiom
(Resource acquisition is initialization): in their constructor, they take a snapshot
of the to-be-modified object (such as a selection of pattern data), and in the
destructor the object’s new state is compared against the copy. If there were
any changes, the difference is sent to the server automatically. This means that
only a single line of code has to be added to each user action, as seen in the
following example:

Listing 2: Example of detecting and transmitting user changes

1 // User has changed the default volume of a sample (simplified example)

2 void CCtrlSamples::OnVolumeChanged()

3 {

4 int volume = GetDlgItemInt(IDC_EDIT7);

5 ModSample &sample = m_sndFile.GetSample(m_nSample);

6 if (volume != sample.nVolume)

7 {

8 SamplePropertyTransaction transaction(m sndFile, m nSample);

9 PrepareUndo("Set Default Volume");

10 sample.nVolume = volume;

11 SetModified(SampleHint().Info(), false, false);

12 }

13 }

In line 8, a SamplePropertyTransaction object is created on the stack
which records the current state of the sample slot. After the undo buffer has
been updated, a single property of the sample is then modified. At the end
of the scope (line 12), the destructor of the transaction object is automatically
called and sends the new state of the object to the server if anything changed.

In addition to these checks if an object changed at all, there are also more
fine-grained checks employed on pattern data. As many pattern operations
span a rectangular selection that can potentially cover areas edited by other
users, only pattern cells that really were modified by the current user should
be transmitted. This avoids overwriting the changes made by other users in
the same area at the same time. The server then only updates its own pattern
data with the changed cells, but sends the full rectangle back to all users as an
authoritative data source.

23

Figure 4.6: Workflow of the collaborative OpenMPT implementation.

Change detection is not the only requirement for keeping the song data
consistent. As the network code runs in a separate thread in order to not stall
the user interface, access to internal data structures needs to be synchronized
in some way. The easiest, most generic but not necessarily most efficient way to
do so is by means of locks. In OpenMPT, there are already locks around most
editing actions, in particular those that access resources that can be added
and removed dynamically (such as patterns, samples and instruments), as the
user interface thread already needs to be synchronized with the audio rendering
thread. However, even when such locks are not yet present, they can be trivially
integrated into pattern described in Listing 2: the lock guard can be a member
of the SamplePropertyTransaction class and thus guard the whole transaction.
Naturally, a lock guard also needs to be inserted into the code that deals with
the data received from the network thread.

Instead of locks, it is also possible to use atomic values for simple global data:
access to integer or floating-point properties does not need a lock if it does not
result in the modification of dependent values. As long as the read and write is
atomic, the data is already safe and consistent. Applying lock-free updates to
larger data structures, however, is error-prone and not trivial to implement, so
locks are the easier and safer solution in that case.

Depending on the software architecture, there is yet another possible imple-
mentation for the data transfer from the network thread: instead of applying
the updates directly in the network thread, a message-passing mechanism that
works across threads (such as window messages in Windows using SendMessage

or PostMessage) can be used to transfer the messages in the user interface
thread. This way, synchronization only needs to happen between the user in-
terface thread and audio thread, as before the networking implementation.

4.2.4 Collaboration Workflow

The collaboration workflow resulting from this implementation, as described
in Figure 4.6, is supported by two dialogs for sharing a song and joining a
collaboration.

In the sharing dialog (Figure 4.7), the user who intends to share a song
chooses how many collaborators and spectators can join them. The collabo-

24

Figure 4.8: Dialog for joining an existing collaboration.

ration can optionally be secured by a password. As soon as the user hits the
“Share” button, the collaboration server is started and accepts requests from
clients. If required, all properties in this dialog can be changed later while
the collaboration is running, e.g. to invite more collaborators. Collaboration
automatically ends when the song is closed.

Figure 4.7: Dialog for sharing a
song with other users.

Collaborators and spectators can join a
shared song by opening the Connection di-
alog as seen in Figure 4.8. In this dialog,
they can specify a server (by means of a host
name) they want to connect to. After the con-
nection has been established, they see a list
of shared songs, including information about
how many people can still join the collabora-
tion and whether a password is required. Af-
ter marking a song in the list, the user can join
the document either as a collaborator or as a
spectator by clicking the appropriate button.
Leaving a collaboration is as simple as closing the document.

Once the shared song is loaded, users can start editing as usual. There are
no differences they have to be aware of, apart from the additional features that
were implemented and are presented in the next section.

4.2.5 Additional Collaboration Features

In the following section, the implementation of additional collaboration features
introduced in the third chapter that surpass the simple synchronization of data

25

Figure 4.9: Chat window with user list and action log.

is discussed and reasoned about.

1. Editing: The various data structures that make up a song are synchro-
nized in different ways described in Section 4.2.3.

2. Chat: The chat window, as seen in Figure 4.9, is the communication
hub for the collaborators. Besides offering a simple plain-text chat, a list of all
participants including their edit cursor color (see feature 4 below) is displayed,
which is a central part of the communication workflow. In addition, the window
contains the annotation list (see feature 7) and an action log.

The action log offers a very condensed view (showing what has been edited,
but not how) of the collaborators’ actions. Whenever a collaborator starts
editing a new entity (e.g. a different pattern), it gets added to the log (e.g.
“John Doe edited pattern 1”). The combination of features in the Chat window
allows to keep track of the song changes on a high level and directly discuss
them if needed. Another reason for using this dialog for several features was to
avoid having too many additional windows open and reduce screen clutter (in
accordance with the second law of the Ten Laws Of Simplicity: Organize [29]).

3. Rights management is used to allow or deny certain actions for some
users. Two rights levels were implemented: collaborator and spectator. Due to
the client-server architecture, all verification can be carried out by the server
before potentially relaying incoming messages to other clients. Every message
received by the server is associated with a specific client object, and all messages
that would modify the song state are ignored if the client object belongs to a
spectator. Other messages such as chat messages are still forwarded to all clients.

26

In a similar fashion, it would be possible to implement more fine-grained rights
management in order to only allow certain editing actions to be carried out by
specific collaborators.

Additionally, shared songs can be protected by a password so that only au-
thorized collaborators and spectators can join a song. The password is checked
when a client wants to join a shared song. As mentioned in the description
of the architecture, information security was not considered to be within the
scope of this thesis, so there is no encryption and the password is transmitted
in plain-text.

Figure 4.10: Collaborators’ shared edit
cursors

4. Shared edit cursors:
When the position of the edit cur-
sor is changed through the function
CViewPattern::SetCurSel, the col-
laborator’s client notifies the server
of the new position. The server then
broadcasts the position to all other
clients. Figure 4.10 demonstrates the
visualization of shared edit cursors:
in the pattern grid, the user’s own
cursor is displayed as usual as a black
rectangle, while other users’ cursors
are shown in the respective user color
(row 3 and 7 in this example). Hov-
ering a pattern cell that is edited by
another user with the mouse shows a
tool-tip containing the user’s name.

The order list above the pattern
grid contains the play order (or sequence) of all patterns that form the song.
Similarly to the pattern data itself, the order positions that other users work
on are colored in the users’ respective colors, giving a rough idea what everyone
is currently working on. Hovering these order positions also reveals the user’s
name.

5. Automatically following edit cursors: This feature was only im-
plemented in spectator mode, but could also be applied to collaborator mode.
By clicking on a collaborator’s user name in the user list, a spectator starts
following the collaborator’s edit cursor automatically. That way, the spectator
sees almost exactly what the collaborator is seeing (modulo different display
settings), similar to a video stream. Playback actions such as play and pause
are also sent to spectators to complete the experience.

6. Edit Locks can be used to restrict the editing of a specific pattern to a
single user. This way, it is guaranteed that no pattern data is overwritten. The
rights management for this feature is implemented both on the client and the
server:

1. The client that wishes to establish or release an edit lock sends this inten-
tion to the server.

2. The server checks if there is already a lock held by a different client. If

27

this is not the case, it notifies all clients that the pattern is now locked.

3. Clients check if the pattern the user wants to edit is already locked, and
display an unobtrusive warning if this is the case (Figure 4.11).

4. Since an edit lock request from another client may arrive at the client
after sending its own edit action for the same pattern, the server rejects
any edit actions from other clients after a lock has been placed and sends
back the original pattern content so that they can undo their edit action.

Figure 4.11: Pattern locked by
a collaborator.

In future versions, this feature could au-
tomatically follow the currently edited pat-
tern so that a user can always prevent other
users from editing the same pattern, without
the need to manually update the locks all the
time. Locking a range of pattern channels
could also help if a user is only interested
in keeping collaborators from editing certain
instruments. This way, they could still edit
different instruments in the same pattern, if
required. Again, similar features could be
added to samples and instruments.

Figure 4.12: Annotations are shown in the chat dialog to reduce clutter.

28

Figure 4.13: Annotations are
displayed in the pattern in an
unobtrusive way.

7. Annotations can be added to any
position in the pattern data and are perma-
nent, as opposed to chat messages that only
exist during the editing session and are lost
when the song is closed. As annotations are
supposed to facilitate discussion, they are not
user-specific. Every pattern position can have
at most one annotation, but more than one
user can edit that annotation. In order to be
not too visually intrusive, pattern cells with
annotations are displayed with a dotted bor-
der (Figure 4.13). When hovering such a cell
with the mouse, the annotation text is shown, and the annotation editor can
be opened through a context menu entry. To be able to quickly locate all an-
notations, a list of all pattern locations with annotations is provided in the
chat window (see Figure 4.12) for quick access. Clicking on an annotation di-
rectly jumps to the pattern containing the annotation so that its context can
be examined.

29

5 Analysis

The implementation of the collaborative music software was analyzed through
a user study. Since the implementation is based on an existing music software,
it made little sense to rate the usability of the software as a whole, in particular
since the software is quite complex already without the collaboration extensions.
There is no baseline and the implementation cannot directly be compared to
other software, so Nestler et al.’s approach [35] was followed to design the exper-
iment. The approach itself is based on the Technology Acceptance Model [11]
and other usability questionnaires. In the end, we can judge the usability and
effectiveness of the collaborative mode and the new collaboration features that
were added, and find possible issues in the implementation.

5.1 Subjects

The experiment was conducted with 17 OpenMPT users of varying expertise
who were already familiar with its interface. To be able to judge the collabora-
tive aspect of the software under realistic circumstances, users located in several
countries participated in the study: six users from Germany, four users from
the USA, two users from Norway and one each from Ireland, Israel, the Nether-
lands, Poland and South Africa. 16 subjects are male and one is non-binary.
Five users are students, four are software developers, two work in IT and the
others are a scientist, an electrical engineer, an information security consultant,
a customer service associate, a graphic designer, and a mathematician respec-
tively. The subjects are 21 to 41 years old, and all of them have experience with
music software. The majority of the subjects (10 out of 17) is already familiar
with collaborative software.

The amount of participants exceeds the minimal number of six subjects
required for a statistical significance of usability tests [21].

5.2 Experimental Setup and Data Collection

All subjects were provided with a copy of the OpenMPT version with collabo-
ration support. The experiment was conducted locally with two expert users,
while the actions of the remaining users were monitored through screen-sharing
software to verify if the tasks were carried out correctly. Since all subjects were
already familiar with the software and the user interface additions were de-
scribed in the tasks for the experiment, no training had to be performed before
the evaluation.

The experiment consists of three parts:

1. A set of nine collaborative tasks to perform together with me.

2. A questionnaire with ten questions to evaluate the results from the tasks.

3. Three open-ended questions that also served as a basis for discussion with
three expert users.

1. Tasks: The users were asked to fulfill nine tasks addressing all of the
new collaborative features. The last two tasks were combined tasks, testing

30

a sequence of actions. Users were asked to make use of a variety of different
editing actions for the evaluation. Here is a short summary of the tasks:

1. Connecting to a server, listing shared documents

2. Evaluating the chat functionality

3. Concurrent pattern editing

4. Following collaborator changes

5. Sharing a new song

6. Concurrent editing with pattern locks

7. Annotations

8. Combined task: Connecting, concurrent pattern editing, instrument edit-
ing, sample editing

9. Combined task: Connecting, instrument creation, instrument editing, pat-
tern locking

The detailed task descriptions can be found in Appendix A.

2. Questionnaire: After carrying out the assigned tasks, all users answered
a set of ten questions derived from Appendix 1 in [35] and rated on the five-
point Likert scale (1: I strongly disagree, 5: I strongly agree). The questions
are sorted into five categories defined by Nestler et al.: Utility (U), Intuitiveness
(J), Memorability (M), Learnability (L) and Personal Effect (P). None of the
questions from the memorability category were relevant to the evaluation, so no
questions were chosen from this category. The chosen questions are:

1. The software is reliable. (U)

2. The software is cumbersome to use. (U)

3. The software enhances my effectiveness. (U)

4. The software meets my expectations. (J)

5. I feel comfortable using this software. (P)

6. The software is frustrating to use. (P)

7. I would like to use the software in the future. (P)

8. The software is mentally demanding. (P)

9. The software facilitates performing my tasks. (U)

10. The visual feedback is appropriate. (L)

Note that “the software” refers to the collaborative features in particular,
and not to OpenMPT in general. A usability factor can be derived from these
questions.

3. Open-ended questions: The remainder of the experiment consisted of
three open-ended questions:

31

1. What do you think about the software’s reliability?

2. Which parts of the software could be improved specifically for collaborative
use? Which collaboration-specific features are missing that could help
enhancing the workflow?

3. To what extent does the software enhance your effectiveness and produc-
tivity? Does it meet your expectations?

Three expert users were invited to participate in a discussion where they
could elaborate more on these three questions. This number of expert users was
expected to be enough to pinpoint the most obvious problems with the software,
as most usability problems can be detected within three to five subjects [35].
Other users were not required to answer these questions, but were encouraged
to do so.

5.3 Data Analysis

The collected data was analyzed in three steps corresponding to the experiment
setup: tasks, questionnaire and open-ended questions.

1. Tasks: For every task, the time required to fulfill the task and the
correctness of the solution were recorded. The user’s score on a task was rated
on a scale from 0 to 1 depending on the correctness and accuracy of the answer.
Tasks with several steps were averaged over the correctness of the individual
steps.

With this data, it would be possible to compute a speed-accuracy trade-off
score, but it was not considered to be a sensible metric for this evaluation: re-
gardless of the correctness of the result, it was observed that the time taken
to solve many of the editing tasks largely varied between users, as some just
fulfilled the bare minimum of editing for solving a task, while other users tested
the editing features more thoroughly, thus taking more time to solve the tasks.
In this case, the resulting calculated usability would be lower, even if the actual
outcome of the task did not reflect this. Hence, the time dimension was dis-
carded from the evaluation and only the correctness of the tasks was considered
as a metric.

2. Questionnaire: There were four questions in the Utility (U) category,
four questions rating the Personal Effect (P), one question regarding the In-
tuitiveness (J) and one rating the Learnability (L). Different weights can be
assigned to the categories to shift focus to particular usability concerns, and in
fact the questions in each category can be sorted into weighted sub-categories
as well. In Nestler’s example [35], questions regarding stress are rated higher
when evaluating user interfaces for emergency situations. In the context of this
evaluation, a balanced weighting with no specific focus was considered to be
reasonable.

From these scores, the usability score U over the categories C with weights
w(s) and scores v(s) can be calculated:

32

U =
∑
c∈C

 ∑
s∈S(c)

w(s) ∗ v(s)

 =
∑
c∈C

(
Uc ∗

wc

100

)

3. Open-ended questions: Nestler [35] also proposes to rate open-ended
questions from expert discussions on a three-point scale: answers can be cat-
egorized as positive (1.0), neutral (0.5) and negative (0.0). The results could
then be handled exactly like those of the questionnaire and the result could be
quantified. However, it was decided that these scores would not be very mean-
ingful, as e.g. everyone provided improvement suggestions, so technically each
comment on the second question would need to be rated neutral. Instead, the
focus was shifted to the qualitative aspects of the answers and will be reflected
in more detail in the discussion in Section 6.1.

5.4 Results

1. Tasks: The averaged scores and durations per task can be found in Table
1. All in all, the average time required to solve all tasks is 30 minutes.

It can be observed that most tasks apart from Task 4 (following collaborator
changes) were solved with high accuracy. The most prominent issue was the
identification of the exact edited pattern locations, in particular when existing
notes were edited rather than inserting new notes. Hence, this feature should be
focused on when analyzing the overall usability result. Nevertheless, a definite
increase in efficiency can be noted compared to the old method of exchanging
collaborations via mail: locating changes becomes much easier even if only the
approximate position is known, compared to having to re-listen the whole song
to find changes after receiving it from a collaborator.

Task 6 (concurrent editing with pattern locks) achieved the second-lowest
average score: while all participants easily found out how to lock patterns, it
was not always clear how to find out which other patterns were locked. As a
result, locked patterns should be visualized more clearly.

Task 1 (finding shared songs) had a similarly low score, but only because
some users hastily listed the shared songs and forgot to mention the number
of allowed collaborators and spectators for each document. It is unlikely that
there is a usability problem.

Apart from the two mentioned issues, no major repeating mistakes were
identified in the other assignments. Simple tasks such as finding shared songs
or annotations were executed quickly on average, so most likely their imple-
mentation is acceptable. The users spent most of the time writing down the
solutions when solving these tasks, which is included in the execution time.

Table 1: Task scores and execution times
Task 1 2 3 4 5 6 7 8 9

Score 0.853 0.971 0.985 0.647 0.941 0.853 1 0.926 0.897

Time 1.647 1.176 2.412 5.176 2.235 3.647 3.588 5.647 4.375

33

1 2 3 4 5
Likert Score (1: Strongly Disagree, 5: Strongly Agree)

Question.10

Question.9

Question.8

Question.7

Question.6

Question.5

Question.4

Question.3

Question.2

Question.1

Q
ue

st
io

ns
Questionnaire evaluation

Figure 5.1: Boxplot showing the data distribution of the questionnaire.

2. Questionnaire:

Table 2 shows the average scores for all questions. Note that questions 2, 6
and 8 were formulated negatively, so their average scores were inverted for the
computation of the category scores. Figure 5.1 shows a boxplot based on the
original questionnaire data.

Table 2: Questionnaire scores

Question 1 2 3 4 5 6 7 8 9 10

Score 3.882 3.882 3.941 4.294 4.059 3.824 4.706 3.353 3.882 3.412

From these scores, a usability factor U can be derived as described in Section
5.3.

Table 3: Calculation of the usability score U of the collaborative editing mode.

Category U J P L

w(s) 0.25 0.25 0.25 0.25

v(s) 0.724 0.824 0.746 0.603

w(s) ∗ v(s) 0.181 0.206 0.187 0.151∑
0.724

Table 3 shows the obtained values from the questionnaire and the resulting
usability score U = 0.724 ∈ [0, 1].

This score is far from optimal, and in particular the scores for question 8 (The
software is mentally demanding) and 10 (The visual feedback is appropriate)

34

indicate that collaborative features need even more attention to visual support
in the user interface in order to be easier to use.

3. Open-ended questions: Although only required to be filled in by the
three chosen expert users, all users answered at least one of the open-ended
questions. The evaluation of their answers showed that the expert users’ usabil-
ity concerns were mostly echoed by the other users. As mentioned, the average
scores on the questions (0.75, 0.5 and 1.0 respectively) were not very meaning-
ful or did not provide any new insight compared to the previous sections, so
a quantitative result cannot be deduced from the open-ended questions. The
replies can be summarized as follows:

1. The feedback regarding reliability was mixed depending on the stability of
the software during the experiment. Half of the experiments were carried
out without any problems, but four sessions were interrupted by crashes,
while the rest was only affected by minor issues. One of the users that ex-
perienced crashes had a very unstable internet connection, which was also
mentioned in the context of this question. The software reliability has to
be improved in particular in the context of unstable network connections.

2. A lot of useful suggestions were made in the answers to the second ques-
tion. They will be discussed further in Section 6.1.

3. In general, it can be said that the feedback was positive and people enjoyed
the experience of making music collaboratively. The expectations of some
participants were even exceeded.

35

6 Discussion and Conclusion

In the remainder of the thesis, we will discuss the results from the user experi-
ment and summarize the results.

6.1 Discussion

While the collaborative implementation was targeted to make all single-user
editing actions available to collaborative editing, this is obviously not enough
to provide the highest possible satisfaction for collaborators, as the mediocre
usability score of U = 0.724 shows. Several collaborative tools were added
to the software, such as the chat functionality and shared editor cursors, but
more collaborative features should be added and the existing features should be
improved in the future to make the software easier to use. The discussion with
expert users resulted in the following suggestions, backed up by the feedback
from the other users. The users’ replies are summarized and paraphrased.

The most common criticism uttered in the questionnaire addressed the vi-
sual feedback:

• Other users’ editing cursors should stand out even more, for example by
marking the entire edited row in the user’s color.

• Most commonly suggested, recently edited data should be marked in the
user’s color, slowly fading away over time. This way, it is not necessary to
keep track of the action log to get a rough idea what the other users are
doing, in particular since the action log is not very detailed.

• Due to time constraints, locked patterns were not visualized properly.
The only way to know if a pattern is locked is by trying to edit it, and by
watching the action log. A lock icon can be added to the locked patterns
in the order list to visually indicate their status.

• The raw action log needs to be represented in a more visually pleasing way,
for example as a data grid with different groups for patterns, samples and
instruments.

• Joining a collaboration can take a while, since a lot of data needs to be
transmitted for some songs. Currently there is no indication how much
data is left to transfer, so the user cannot know when the loading process
is done. A progress bar needs to be added to indicate the downloading
status.

• It is easy to miss incoming chat messages, because the only visual indi-
cation is the new message itself. The user must, at least optionally, be
notified so that they do not forget about those messages.

• It should be possible to follow the edit actions of another musician not
only as a spectator, but also as a collaborator, making it easier to follow
their sketches and ideas.

• Not everyone considered the newly added icons to be meaningful, so better
icons need to be found.

36

Other feedback addressed technical issues:

• For some users, editing instrument envelopes was very cumbersome due to
the round-trip-time from the server. When continuously moving an enve-
lope point with the mouse, the received envelope point position from the
server lags behind the mouse cursor, in particular if the two collaborators
are not geographically close. This shows that for some parts of the applica-
tion, the approach of a centralized coordinator process does not work well
and an alternative like Ellis’ Operational Transformation approach [12] or
Sun’s [43] and Cormack’s [9] improvements must be explored.

• One participant of the experiments had a very unstable internet connec-
tion, causing their client to be disconnected from the server several times.
Clients could reconnect automatically and transparently in this case.

But there was also a lot of positive feedback:

• Most importantly, the immediacy of real-time collaborations was described
as invigorating and motivating, leading to new sources of inspirations,
increased efficiency and better flow for cooperations.

• Apart from producing full compositions, further usage scenarios were sug-
gested such as drafting, or using it as a training tool for teaching how to
use the software or how to write music.

• The annotation feature was deemed to be very useful even in single-user
contexts and should be expanded to be able to annotate any part of a
song, not just the note data.

In addition, the following observations were made during the experiment:

• People instantly figured out how to lock patterns, indicating that the
feature was placed intuitively.

• The buttons for sharing and joining shared songs were typically found
rather quickly as well.

• While some participants instantly realized how to annotate their patterns,
others did not find the functionality instantly and searched in unrelated
parts of the program. However, this confusion was possibly caused by
the assumption that annotations are unique per pattern, while they can
actually be used to annotate specific pattern cells.

• Most information for solving the tasks was found in the action log, but it
was not always used. It needs to be made more prominent and usable, as
mentioned above.

• Managing screen estate was sometimes cumbersome due to the extra win-
dows, in particular on smaller screens. Moving some of the information
to the main window could help with further reducing screen clutter. It
was suggested to make the chat window dockable, and the action log and
annotation list should be resizable.

37

The workload for each step of the collaboration task model is greatly reduced
in particular due to the avoidance of context switches to other supporting ap-
plications:

• Task execution: Musicians no longer need to take turns at editing the
file but can realize their ideas immediately. The danger of breaking their
flow and forgetting ideas until they are allowed to edit again is avoided.

• Data exchange and synchronization: Song files no longer have to be
sent back and forth between collaborators. Changes can be observed live,
rather than having to scan the entire song repeatedly. With the improve-
ments suggested by the expert users, following collaborator changes can
be simplified even further.

• Comments and discussion: It is no longer necessary to switch to an ex-
ternal chat application, which can break the flow and creativity. Changes
and ideas can be directly annotated in the music software now. It is not
required to note down the exact location of what needs to be discussed,
which can be error-prone and cumbersome.

• Rights management: Roles can be directly assigned at the start of
the collaboration, not requiring any further discussion. Tasks can change
dynamically during the composition, which is supported by the integrated
chat.

All in all, expert users agreed that the possibility to collaborate with musi-
cians in other geographic locations was very useful to them and the functionality
even surpassed their expectations. For example, it was mentioned that the soft-
ware will help them working with a more skilled musician to help them with
their musical drafts where required. Not having to wait for the other musicians,
as with the “classic” way of collaborating, is a great enhancement to some users’
workflow. The spectator mode in particular was very novel and interesting to
them.

6.2 Conclusion and Future Work

In this thesis, a collaborative editing mode was added to OpenMPT. It already
supports the basic collaboration tasks quite well, so that it is possible to col-
laborate with another tracker musician in real-time. Real users of the software
accepted the implementation, which even surpassed the expectations of some
people.

In addition to the improvement suggestions from the usability evaluations,
there is a number of other technical improvements that should be made and
ideas that need to be researched:

• Plugins are local resources that cannot be shared easily. A plugin con-
sists of executable code (a shared library) and possibly arbitrary other
files, and may require proper installation in order to function. Commer-
cial plugins often also need to be licensed on the computer they run on.
This means that the music software cannot simply share missing plugins
between collaborators, but when inserting new plugins into a song, the

38

choice of plugins could be limited to those that are available to all other
collaborators as well. This ensures a more consistent playback between all
collaborators.

• To allow more flexible sharing, the server component should, at least op-
tionally, not be required to run in the same process or even physical com-
puter as the OpenMPT instance the song is being edited in. This would
allow for songs to be automatically shared over an extended period of
time and not require the user who shares the song to be available at all
times. A central Network Information Service (a “yellow pages server”)
could also serve as a general hub for musicians to join any collaborations
projects by fellow artists they are interested in.

• Collaborative features that were only implemented partially for the pur-
pose of demonstration need to be extended: edit cursors and locks for
sample and instrument slots are currently lacking, and the granularity of
pattern locks needs to be revised.

• Another long-standing feature request for OpenMPT is a scripting API;
Both the collaborative mode and the scripting functionality add similar
complexity to the code, in particular regarding synchronization of concur-
rent access. As described in Section 4.2.3, the collaborative features can
make use of the scripting infrastructure. To reduce the overall complexity
of the code, an implementation of the collaborative mode entirely using
the scripting API should be researched.

• It should be investigated whether it is sensible to replace the client-server
approach with the research by Sun [43] and Cormack [9].

• It should be researched if and how smartphones or tablets can support the
process of collaborative music composition, e.g. by showing the content of
the Chat window on a second screen, or by displaying a visual outline of
the song including locks, annotations and changes done by collaborators.

In general, we have seen that it is possible to extend the workflow of trackers
to more than one user, and the fast edit-audition feedback cycle leading to a
high degree of liveness is preserved or even amplified when several collaborators
work on tracked music at the same time. Musicians no longer have to interrupt
their workflow by sending the current status back and forth and discussing it
in external chat programs. Instead, they can rapidly audition their collabora-
tors’ changes and ideas and get inspired by them in completely new ways. The
creative process is enhanced by the immediacy of real-time collaboration and
supported by long-term features such as annotations. Collaborative music soft-
ware does not only enable musicians to work on a joint composition, but it can
also be used in an educational context.

On the technical side, the results from this implementation can also be gen-
eralized to other single-user software, as seen in Section 4.2.3 in particular.
While the choice of an optimal synchronization scheme (centralized coordinator
process, operational transformation, etc.) depends on the data that needs to
be synchronized, the change detection will often look similar and can be easily
adapted for the necessary data synchronization. In C++, this can be achieved

39

by adding a single line of code at each modification site thanks to the RAII
principle.

With the insight about change detection and synchronization obtained from
these steps, it should be moderately easy to extend another tracker with collab-
oration features, although the steps can also be generalized to sequencers and
completely different kinds of software.

40

References

[1] Ableton AG. Ableton Live. https://www.ableton.com/en/live/, re-
trieved on 10 January 2018.

[2] asio authors. asio C++ library. https://think-async.com/, retrieved on
3 January 2018.

[3] Peter Barth and Chris O’Neill. MilkyTracker. http://milkytracker.

titandemo.org/, retrieved on 10 January 2018.

[4] R Beuscart, C Grave, M Wartki, S Serbouti, and MC Beuscart-Zephir.
Computer supported cooperative work for medicine imaging. In Engineer-
ing in Medicine and Biology Society, 1992 14th Annual International Con-
ference of the IEEE, volume 3, pages 1213–1214. IEEE, 1992.

[5] Blend.io. Blend - Make Music Together. https://blend.io/, retrieved on
20 December 2017.

[6] Paul Booth. An Introduction to Human-Computer Interaction (Psychology
Revivals). Psychology Press, 2014.

[7] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. An
empirical evaluation of TCP performance in online games. In Proceedings of
the 2006 ACM SIGCHI international conference on Advances in computer
entertainment technology, page 5. ACM, 2006.

[8] Sook Kuan Chin and Alvin W Yeo. Computer Supported Cooperative Work
(CSCW) in orthography system development. In Computer Applications
and Industrial Electronics (ICCAIE), 2010 International Conference on,
pages 579–583. IEEE, 2010.

[9] Gordon V Cormack. A calculus for concurrent update. In Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing,
page 269. ACM, 1995.

[10] Tracktion Corporation. Tracktion Music Production Technology. https:
//www.tracktion.com/, retrieved on 10 January 2018.

[11] Fred D Davis. Perceived usefulness, perceived ease of use, and user accep-
tance of information technology. MIS quarterly, pages 319–340, 1989.

[12] Clarence A Ellis and Simon J Gibbs. Concurrency control in groupware
systems. In Acm Sigmod Record, volume 18, pages 399–407. ACM, 1989.

[13] Clarence A Ellis, Simon J Gibbs, and Gail Rein. Groupware: some issues
and experiences. Communications of the ACM, 34(1):39–58, 1991.

[14] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication
across network address translators. In USENIX Annual Technical Confer-
ence, General Track, pages 179–192, 2005.

[15] Jean-loup Gailly and Mark Adler. zlib Home Site. https://zlib.net/,
retrieved on 6 January 2018.

41

https://www.ableton.com/en/live/
https://think-async.com/
http://milkytracker.titandemo.org/
http://milkytracker.titandemo.org/
https://blend.io/
https://www.tracktion.com/
https://www.tracktion.com/
https://zlib.net/

[16] Steinberg Media Technologies GmbH. Steinberg Cubase. https://www.

steinberg.net/en/products/cubase/start.html, retrieved on 10 Jan-
uary 2018.

[17] Steinberg Media Technologies GmbH. VST Connect Pro. https:

//www.steinberg.net/us/products/vst/vst_connect/vst_connect_

pro.html, retrieved on 20 December 2017.

[18] Google Inc. gRPC, a high performance, open-source universal RPC frame-
work. https://grpc.io/, retrieved on 3 January 2018.

[19] W. Shane Grant and Randolph Voorhies. cereal - a C++11 library for seri-
alization. https://uscilab.github.io/cereal/, retrieved on 3 January
2018.

[20] W. Shane Grant and Randolph Voorhies. Pointers and References. cereal
- a C++11 library for serialization. http://uscilab.github.io/cereal/
pointers.html, retrieved on 25 October 2017.

[21] Marcus Hegner. Methoden zur Evaluation von Software. 2003.

[22] Jan Hemming. Technologie und Produktion. In Methoden der Erforschung
populärer Musik.

[23] Image-Line. FL Studio. https://www.image-line.com/flstudio/, re-
trieved on 10 January 2018.

[24] Cockos Incorporated. NINJAM. https://www.cockos.com/ninjam/, re-
trieved on 20 December 2017.

[25] Cockos Incorporated. REAPER. https://www.reaper.fm/, retrieved on
10 January 2018.

[26] Kompoz LLC. Kompoz Music Collaboration. https://www.kompoz.com/
music/, retrieved on 20 December 2017.

[27] J Jenny Li, Tangqiu Li, Zongkai Lin, Aidtya Mathur, and Karama Ka-
noun. Computer supported cooperative work in software engineering. In
Computer Software and Applications Conference, 2004. COMPSAC 2004.
Proceedings of the 28th Annual International, pages 328–vol. IEEE, 2004.

[28] Jeffrey Lim. The Official Impulse Tracker Page. http://www.users.on.
net/~jtlim/ImpulseTracker/, retrieved on 20 December 2017.

[29] John Maeda. The laws of simplicity. MIT press, 2006.

[30] Eduard Müller. Renoise. https://renoise.com/, retrieved on 10 January
2018.

[31] MuseScore BVBA. Sheet music at your fingertips. https://musescore.
com/, retrieved on 20 December 2017.

[32] Chris Nash. Supporting virtuosity and flow in computer music. PhD thesis,
University of Cambridge, 2012.

[33] Chris Nash. Manhattan: End-user programming for music. 2014.

42

https://www.steinberg.net/en/products/cubase/start.html
https://www.steinberg.net/en/products/cubase/start.html
https://www.steinberg.net/us/products/vst/vst_connect/vst_connect_pro.html
https://www.steinberg.net/us/products/vst/vst_connect/vst_connect_pro.html
https://www.steinberg.net/us/products/vst/vst_connect/vst_connect_pro.html
https://grpc.io/
https://uscilab.github.io/cereal/
http://uscilab.github.io/cereal/pointers.html
http://uscilab.github.io/cereal/pointers.html
https://www.image-line.com/flstudio/
https://www.cockos.com/ninjam/
https://www.reaper.fm/
https://www.kompoz.com/music/
https://www.kompoz.com/music/
http://www.users.on.net/~jtlim/ImpulseTracker/
http://www.users.on.net/~jtlim/ImpulseTracker/
https://renoise.com/
https://musescore.com/
https://musescore.com/

[34] Chris Nash and Alan Blackwell. Flow of creative interaction with digital
music notations. 2014.

[35] Simon Nestler, Eva Artinger, Tayfur Coskun, Yeliz Yildirim-Krannig,
Sandy Schumann, Mareike Maehler, Fabian Wucholt, Stefan Strohschnei-
der, and Gudrun Klinker. Assessing qualitative usability in life-threatening,
timecritical and unstable situations, 10. In Workshop Mobile Information-
stechnologien in der Medizin (MoCoMed 2010), 2010.

[36] Nobuyuki. OpenMPT feature request: Networking. https://forum.

openmpt.org/index.php?topic=3857.0, retrieved on 20 December 2017.

[37] Ohm Force SARL. ohmstudio.com, Ohm Studio website. https://www.
ohmstudio.com/, retrieved on 20 December 2017.

[38] Markku Reunanen et al. Computer demos–what makes them tick. Licen-
tiate thesis, Helsinki: Aalto University, 2010.

[39] Franca-Alexandra Rupprecht, Bernd Hamann, Christian Weidig, Jan C.
Aurich, and Achim Ebert. IN2CO - A Visualization Framework for Intuitive
Collaboration. In Enrico Bertini, Niklas Elmqvist, and Thomas Wischgoll,
editors, EuroVis 2016 - Short Papers. The Eurographics Association, 2016.

[40] Franca-Alexandra Rupprecht, Taimur Kausar Khan, Gerrit van der Veer,
and Achim Ebert. Criteria catalogue for collaborative environments. In
BISL, 2017.

[41] Johannes Schultz. OpenMPT website. https://openmpt.org/, retrieved
on 20 December 2017.

[42] Johannes Schultz. The Mod Archive, of the world’s largest collections of
music modules. https://modarchive.org/, retrieved on 2 January 2018.

[43] Chengzheng Sun and Clarence Ellis. Operational transformation in real-
time group editors: issues, algorithms, and achievements. In Proceedings of
the 1998 ACM conference on Computer supported cooperative work, pages
59–68. ACM, 1998.

[44] Oskari Tammelin. Jeskola Buzz. https://jeskola.net/buzz/, retrieved
on 10 January 2018.

[45] Star Taylor. Schism Tracker. http://schismtracker.org/, retrieved on
10 January 2018.

[46] The Etherpad Foundation. Etherpad. http://etherpad.org/, retrieved
on 3 January 2018.

[47] Hui Yu, Hongcheng Deng, Zhenxiang Zhao, and Yu Xiao. Transformation
of landscape planning and design in computer supported cooperative work
era. In Computer Supported Cooperative Work in Design, 2008. CSCWD
2008. 12th International Conference on, pages 1112–1115. IEEE, 2008.

43

https://forum.openmpt.org/index.php?topic=3857.0
https://forum.openmpt.org/index.php?topic=3857.0
https://www.ohmstudio.com/
https://www.ohmstudio.com/
https://openmpt.org/
https://modarchive.org/
https://jeskola.net/buzz/
http://schismtracker.org/
http://etherpad.org/

Appendices

A User Experiment Tasks

Task 1: Connecting
Open the networking dialog by clicking the Connect icon. Connect to the server
address SERVER ADDRESS. Note down the available documents and how many
people can still join them:

Task 2: Communication

1. Connect to the shared song Task2 as a collaborator.

2. Make sure the chat dialog for the current document is open.

3. Write a chat message in the chat dialog belonging to the edited document.

4. Note down the names of all people that have participated in the chat so
far.

Task 3: Concurrent editing
Let’s edit the song from Task 2 together.

1. Create a new pattern and insert a note sequence of your choice. Note
down the inserted pattern ID:

2. Convert all samples to instruments by inserting a new instrument in the
instrument editor.

Task 4: Following collaborator changes
Collaboration mode adds an action log, found in the chat window, where you
can find a condensed view of all user actions in the current session.

1. Observe the changes your collaborator makes to the document. Write
down the pattern IDs and channel numbers in which edits are made:

2. Connect once again to SERVER ADDRESS and join the same shared song as
a spectator.

3. Follow your collaborator by clicking on the nickname in the user list and
switching to the pattern view. Note down the visited patterns, as well as
the edited patterns:

Task 5: Rights management
How can you create a shared song with 1 collaborator and 3 spectators? Briefly
describe the actions required to accomplish this:

44

Task 6: Concurrent editing

1. Connect once again to SERVER ADDRESS and join the shared song Task6
as a collaborator.

2. Find out which patterns have been locked by the collaborator. What
happens when you edit them?

3. Lock pattern 3 and edit it.

Task 7: Annotations
Pattern annotations help organizing the collaboration and are not lost between
editing sessions.

1. Add an annotation to your edited pattern data.

2. Find all annotations in the current song and write down their positions
(pattern / channel):

Task 8: Combined Task 1

1. Connect to SERVER ADDRESS and join the shared song Task8 as a collab-
orator.

2. Edit any patterns you like, and try to keep track of your collaborator’s
actions as much as possible at the same time. Note down the collaborator’s
edited patterns at the end of this task:

3. Edit the volume envelope of instrument 14.

4. Edit sample 8.

Task 9: Combined Task 2

1. Connect to SERVER ADDRESS and join the shared song Task9 as a collab-
orator.

2. Create a new instrument and drag instrument 0 (Piano 1) from GM.DLS’s
Melodic bank into it. Note down the instrument’s number:

3. Note down the associated sample numbers:

4. Adjust the instrument’s volume envelope.

5. Lock patterns 0 and 1.

6. Which instruments have been edited by your collaborator?

45

B Source Code

The source code is available both at https://gitlab.rhrk.uni-kl.de/j_schult/
openmpt/tree/networking and on the CD submitted with the thesis. The CD
contains both the full source tree including build instructions as well as a .patch
file against the official OpenMPT repository (https://source.openmpt.org/
svn/openmpt/trunk/), revision 9430.

46

https://gitlab.rhrk.uni-kl.de/j_schult/openmpt/tree/networking
https://gitlab.rhrk.uni-kl.de/j_schult/openmpt/tree/networking
https://source.openmpt.org/svn/openmpt/trunk/
https://source.openmpt.org/svn/openmpt/trunk/

	Introduction
	Context and Motivation
	Goals
	Outline

	Related Work
	Collaborative Software
	Music Software
	Collaborative Music Software

	Methodology
	Collaboration Process of Music Composition
	Base System Design
	Applied Collaboration Methodology

	Implementation
	Software Architecture
	OpenMPT
	Networking Components
	Architecture Details
	Code Organization

	Technical Realization
	Client / Server Architecture
	Serialization of Internal Data Structures
	Synchronization of User Actions
	Collaboration Workflow
	Additional Collaboration Features

	Analysis
	Subjects
	Experimental Setup and Data Collection
	Data Analysis
	Results

	Discussion and Conclusion
	Discussion
	Conclusion and Future Work

	Appendices
	User Experiment Tasks
	Source Code

